Tuesday, 18 December 2018
www.printzenrolle.de
Home

Hauptmenü
Home
Bauen
Essen & Trinken
Finanzen
Flora & Fauna
Gesundheit
Informationstechnologie
Kunst & Kultur
Politik / Geschichte
Sport & Freizeit
Technik
Transport und Verkehr
Wissenschaft
Google-Werbung
Global Positioning System (GPS) Drucken E-Mail
Ein Global Positioning System, (deutsch sinngemäß: Globales Positionsbestimmungssystem) (GPS) ist jedes weltweite, satellitengestützte Navigationssystem. Der Begriff GPS wird aber im allgemeinen Sprachgebrauch speziell für das NAVSTAR-GPS des US-Verteidigungsministeriums verwendet, das Ende der 1980er-Jahre zur weltweiten Positionsbestimmung und Zeitmessung entwickelt wurde. Die vielfach verwendete Übersetzung Positionierungssystem ist nicht sinngemäß, da GPS keine unmittelbare Positionsänderung im Sinne eines Aktor-Effekts bewirkt.

NAVSTAR-GPS ist heute weltweit das wichtigste Ortungs- und Navigationssystem und löste ab etwa 1985 das alte, 1999 auslaufende Satellitennavigationssystem NNSS (Transit) der US-Marine ab, ebenso die Vela-Satelliten zur Ortung von Atombombenexplosionen. Die Ortungsgenauigkeit des Standard-Codes stieg am 1. Mai 2000 mit Abschaltung der künstlichen Signalverzerrung (Selective Availability) von etwa 100 Meter auf 10–15 Meter und lässt sich durch verschiedene Differenzmethoden (dGPS) auf Zentimeter steigern. Mit speziellen Mehrfrequenzgeräten mit Messung der L1- und L2-Frequenz sowie längeren Messzeiten werden für geodätische Zwecke Genauigkeiten von wenigen Millimetern/km Basislinienabstand erreicht.

Die offizielle Bezeichnung ist „Navigational Satellite Timing and Ranging - Global Positioning System“ (NAVSTAR-GPS). NAVSTAR wird manchmal auch als Abkürzung für „Navigation System using Timing and Ranging“ genutzt. GPS wurde am 17. Juli 1995 offiziell in Betrieb genommen.

Einsatzbereiche

GPS war ursprünglich zur Positionsbestimmung und Navigation im militärischen Bereich (in Waffensystemen, Kriegsschiffen, Flugzeugen) usw. vorgesehen. Heute wird es jedoch vermehrt auch im zivilen Bereich genutzt: in der Seefahrt, Luftfahrt, durch Navigationssysteme im Auto, zur Orientierung im Outdoor-Bereich, im Vermessungswesen etc. In der Landwirtschaft wird es beim so genannten Precision Farming zur Positionsbestimmung der Maschinen auf dem Acker genutzt. Ebenso wird GPS nun auch im Leistungssport verwendet. Speziell für den Einsatz in Mobiltelefonen wurde das Assisted GPS (A-GPS) entwickelt.

Aufbau und Funktionsweise der Ortungsfunktion

Das Prinzip der Satellitenortung beschreibt der Artikel Global Navigation Satellite System.

GPS basiert auf Satelliten, die ständig ihre sich ändernde Position und die genaue Uhrzeit ausstrahlen. Aus deren Signallaufzeit können GPS-Empfänger dann ihre eigene Position und Geschwindigkeit berechnen. Theoretisch reichen dazu die Signale von drei Satelliten aus, welche sich oberhalb ihres Abschaltwinkels befinden müssen, da daraus die genaue Position und Höhe bestimmt werden kann. In der Praxis haben aber GPS-Empfänger keine Uhr, die genau genug ist, um die Laufzeiten korrekt messen zu können. Deshalb wird das Signal eines vierten Satelliten benötigt, mit dem dann auch die genaue Zeit im Empfänger bestimmt werden kann. Zur Mindestanzahl der benötigten Satelliten siehe GPS-Technologie.

Mit den GPS-Signalen lässt sich aber nicht nur die Position, sondern auch die Geschwindigkeit des Empfängers bestimmen. Dieses erfolgt im Allgemeinen über Messung des Dopplereffektes oder die numerische Differenzierung des Ortes nach der Zeit. Die Bewegungsrichtung des Empfängers kann ebenfalls ermittelt werden und als künstlicher Kompass oder zur Ausrichtung von elektronischen Karten dienen.

Damit ein GPS-Empfänger immer zu mindestens vier Satelliten Kontakt hat, werden insgesamt mindestens 24 Satelliten eingesetzt, die die Erde jeden Sternentag zweimal in einer Höhe von 20.183 km umkreisen. Jeweils mindestens vier Satelliten bewegen sich dabei auf jeweils einer der sechs Bahnebenen, die 55° gegen die Äquatorebene inkliniert (geneigt) sind und gegeneinander um jeweils 60° verdreht sind. Ein Satellit ist damit alle 23 Stunden 55 Min und 56,6 Sekunden über demselben Punkt der Erde.

Ein Satellit hat eine erwartete Lebensdauer von 7,5 Jahren, doch funktionieren die Satelliten häufig deutlich länger. Um Ausfälle problemlos zu verkraften, wurden daher bis zu 31 Satelliten in den Orbit gebracht, sodass man auch bei schlechten Bedingungen fünf oder mehr Satelliten verwenden kann. Aktuell benötigt man 60 Tage für das Austauschen eines Satelliten; aus Kostengründen versucht man, diesen Zeitraum auf zehn Tage zu senken und somit die Satellitenanzahl auf 25 zu reduzieren.

Das Datensignal mit einer Datenrate von 50 bit/s und einer Rahmenperiode von 30 s wird parallel mittels Spread Spectrum Verfahren auf zwei Frequenzen ausgesendet:

    * Auf der L1-Frequenz (1575,42 MHz) werden der C/A-Code („Coarse/Acquisition“) für die zivile Nutzung, und orthogonal dazu der nicht öffentlich bekannte P/Y-Code („Precision/encrypted“) für die militärische Nutzung eingesetzt. Das übertragene Datensignal ist bei beiden Codefolgen identisch und stellt die 1500 Bit lange Navigationsnachricht dar. Sie enthält alle wichtigen Informationen zum Satelliten, Datum, Identifikationsnummer, Korrekturen, Bahnen, aber auch den Zustand, und benötigt zur Übertragung eine halbe Minute. GPS-Empfänger speichern diese Daten normalerweise zwischen. Zur Initialisierung der Geräte werden des Weiteren auch die so genannten Almanach-Daten übertragen, die die groben Bahndaten aller Satelliten enthalten und zur Übertragung über zwölf Minuten benötigen.

    * Die zweite Frequenz L2-Frequenz (1227,60 MHz) überträgt nur den P/Y-Code. Wahlweise kann auf der zweiten Frequenz auch der C/A-Code übertragen werden. Durch die Übertragung auf zwei Frequenzen können ionosphärische Effekte, die zur Erhöhung der Laufzeit führen, herausgerechnet werden, was die Genauigkeit steigert.

    * Momentan ist eine dritte L5-Frequenz (1176,45 MHz) im Aufbau. Sie soll die Robustheit des Empfangs weiter verbessern und ist vor allem für die Luftfahrt und Safety-of-Life-Anwendungen vorgesehen. Bei der derzeitigen Geschwindigkeit des Ausbaus ist mit einer Fertigstellung ab 2010 und einem Regelbetrieb ab 2013 zu rechnen.

Weitere Aufgaben

Die GPS-Satelliten sind Teil des US-Programms Nuclear Detection System (NDS), früher Integrated Operational Nuclear Detection System (IONDS) genannt, eingebunden in das Verteidigungsprogramm DSP (Defense Support Program). Sie verfügen über Sensoren für Infrarot- und Gammastrahlung (s. a. en:Bhangmeter) und ebenso Detektoren für EMP. Damit sollen sie Atombombenexplosionen und Starts von Interkontinentalraketen mit einer Ortsauflösung von 100 m registrieren. Das GPS hat dabei das Vela-System abgelöst.

Eine weitere Aufgabe des GPS Systems besteht in der Bereitstellung eines einheitlichen Zeitsystems. Die Uhren der Satelliten werden mehrmals täglich auf GPS-Zeit synchronisiert. Die von einem GPS-Empfänger empfangene Zeit ist zunächst die GPS-Zeit. In der Satellitennachricht ist aber auch die Abweichung zwischen GPS-Zeit und Koordinierter Weltzeit (UTC) angegeben. Mit der Genauigkeit der GPS-Zeit und der Angabe der Abweichung garantiert das System eine Abweichung von UTC um maximal eine Mikrosekunde, wenn die Laufzeit auch so genau bestimmt wird.

Geschichte

Die Grundidee, mittels Satelliten ein Navigationssystem aufzubauen, gab es bereits vor dem Zweiten Weltkrieg: Am 11. Mai 1939 meldete der deutsche Ingenieur Karl Hans Janke in Berlin ein Patent für einen „Standortanzeiger, insbesondere für Luftfahrzeuge“ an, welches am 11. November 1943 erteilt wurde. Im Patent geht er von zwei entfernten Körpern (Satelliten) aus, die permanent elektromagnetische Signale senden. Die Signale können empfangen werden und als Vektor auf einem Bildschirm angezeigt werden. Legt man nun eine Karte über den Bildschirm, könne man sogar die Herkunft und Richtung eines Objektes bestimmen. Karl Hans Janke wurde in der DDR wegen „wahnhaftem Erfinden“ eingesperrt und verstarb 1988 in der Psychiatrie Hubertusburg.

Neben bodengestützten Funknavigationssystemen wie dem während des Zweiten Weltkriegs entwickelten Decca Navigation System, welches später vor allem der Seeschifffartsnavigation diente und prinzipbedingt nur lokal verfügbar war, wurde ab 1958 von der US-Marine das erste Satellitennavigationssystem Transit entwickelt. Zunächst unter der Bezeichnung Navy Navigation Satellite System (NNSS) wurde es ab 1964 militärisch zur Zielführung ballistischer Raketen auf U-Booten und Flugzeugträgern der US-Marine und ab 1967 auch zivil genutzt und ist seit dem 31. Dezember 1996 außer Betrieb. Seine Sendefrequenzen lagen bei 150 und 400 MHz und es erreichte eine Genauigkeit zwischen 500 und 15 m.
Start eines GPS-Satelliten am 25. September 2005 an Bord einer Delta-II-7925-9.5-Rakete

Das GPS-Programm wurde mit der Gründung des JPO (Joint Program Office) im Jahre 1973 gestartet. Der erste GPS-Satellit wurde 1978 in den Weltraum entsandt. Im Dezember 1993 wurde die anfängliche Funktionsbereitschaft (Initial Operational Capability) festgestellt. Zu diesem Zeitpunkt waren 24 Satelliten im Einsatz. Die volle Funktionsbereitschaft (Full Operational Capability) wurde im April 1995 erreicht und am 17. Juli 1995 bekanntgegeben.

Um nicht-autorisierte Benutzer (potentielle militärische Gegner) von einer genauen Positionsbestimmung auszuschließen, wurde die Genauigkeit für Benutzer, die nicht über einen Schlüssel verfügen, künstlich verschlechtert (Selective Availability = SA, mit einem Fehler von größer 100 m). SA musste in den Block-II-Satelliten implementiert werden, weil der C/A-Dienst deutlich besser als ursprünglich erwartet war. Es gab aber fast immer vereinzelte Satelliten, bei welchen SA nicht aktiviert war, sodass genaue Zeitübertragungen möglich waren.

Am 2. Mai 2000 wurde diese künstliche Ungenauigkeit der Satelliten abgeschaltet, ab ca. 4:05 Uhr UTC sendeten alle Satelliten ein SA-freies Signal. Seitdem kann das System auch außerhalb des bisherigen exklusiven Anwendungsbereichs zur präzisen Positionsbestimmung genutzt werden. Dies führte unter anderem zum Aufschwung der Navigationssysteme in Fahrzeugen und im Außenbereich, da der Messfehler nun in mindestens 90 % der Messungen geringer als 10 m ist.

Am 25. September 2005 brachte eine Delta-II-Rakete den ersten GPS-Satelliten der Baureihe GPS 2R-M (Modernized) in den Weltraum. Die Antenne wurde verbessert und das Sendespektrum um eine zweite zivile Frequenz und zwei neue militärische Signale erweitert. Seit Dezember 2005 im Einsatz, erweiterte der neue Satellit die Flotte der funktionstüchtigen Satelliten auf 28. Momentan sind 32 Satelliten aktiv (Stand Juni 2008).

Das Pentagon autorisierte die United States Air Force am 9. Mai 2008, die ersten acht Satelliten der dritten Baureihe zu bestellen. Für Entwicklung und Bau wurden 2 Mrd. US-Dollar bereitgestellt. Die dritte Generation wird aus insgesamt 32 Satelliten bestehen und soll ab 2014 das GPS-II-System ersetzen. Sie unterscheiden sich durch eine erhöhte Signalstärke und weitere Maßnahmen um eine Störung der Signale zu erschweren. Lockheed Martin und Boeing konkurrieren um den Auftrag, mit dem automatisch auch die nachfolgenden 24 Satelliten verbunden sein werden.

GPS und Datenschutz

Der Aufenthaltsort des Trägers eines GPS-Empfängers lässt sich, da die Geräte momentan nur passiv arbeiten und keine Signale senden, nicht verfolgen. Für eine GPS-Überwachung benötigt man eine Kombination aus einem passiven GPS-Empfänger mit einem aktiven Sender, der die ermittelten Positionsdaten an Dritte weitergibt.

GPS wird von der deutschen Polizei für Ermittlungen eingesetzt. Es dient zur Überwachung bestimmter Fahrzeuge und Fahrer. Im April 2005 entschied das Bundesverfassungsgericht, dass der Einsatz des satellitengestützten Systems zur Überwachung in einem strafrechtlichen Ermittlungsverfahren nicht gegen das Grundgesetz verstoße. Der Zweite Senat wies mit diesem Urteil eine Verfassungsklage eines Ex-Mitglieds der Antiimperialistischen Zellen (AIZ) zurück, das beanstandet hatte, eine zweieinhalb Monate andauernde Überwachung seines Fahrzeugs und dessen verschiedener Benutzer habe in übertriebener Weise in Grundrechte der Überwachten eingegriffen.

GPS in der Praxis

Ein verbreitetes Einsatzgebiet ist das Flottenmanagement von Verkehrsbetrieben und des Transportwesens zu Land und auf Wasser/See. Wenn die Fahrzeuge mit GPS und einem Transponder ausgerüstet sind, hat die Zentrale jederzeit einen Überblick über den Standort der Fahrzeuge und kann bei Störungen sofort eingreifen.

Auch die modernen Ausführungen der Elektronischen Fußfessel sind mit GPS ausgerüstet.

Handelsübliche zivile GPS-Geräte für Verbraucher eignen sich vor allem für den Einsatz im Auto und im „Outdoor“-Bereich. Handelsübliche GPS-Empfänger (GPS-Mäuse) verwenden meist das NMEA 0183-Datenformat zur Ausgabe der Positionsdaten.

Den großen Unterschied macht jedoch heute in miteinander vergleichbaren Systemen weniger die Technik, sondern vielmehr das jeweilige Navigationsprogramm. So gibt es derzeit von Programm zu Programm noch durchaus Unterschiede in der Routenführung.

2006 entdeckte Alessandro Cerruti von der amerikanischen Cornell University, dass GPS durch Sonneneruptionen gestört werden kann. In den vergangenen Jahren waren diese – und die damit verbundenen geomagnetischen Stürme – wenig ausgeprägt, sie sollen jedoch bis 2011 wieder zunehmen.

Auch kann der GPS-Empfang durch starke Schneefälle gestört werden. Sonstige Wetterverhältnisse, wie Regen und Nebel, beeinträchtigen den Empfang normalerweise jedoch nicht — allerdings ist der Empfang unter regennassem Laub im Wald deutlich schlechter als bei trockener Witterung.

Zu den Herstellern zählen Garmin, Magellan, TomTom, HAiCOM, Globalsat und RoyalTec.

In Job und Freizeit

Hier kommen heute vor allem die folgenden drei Produkte zum Einsatz

    * Trace und Tracking Es kann jederzeit verfolgt werden, welche Route wurde zu welcher Zeit zurückgelegt. Sehr gut als Fahrtenbuch einsetzbar, welches nicht manipulierbar ist und den Arbeitsalltag für Arbeitgeber und Arbeitnehmer ungemein erleichtert.
    * Lokalisation Die Standorte von Mitarbeitern, Produkten oder sogar den Liebsten sind nicht länger ein Geheimnis. Mann kann die Mitarbeiter flexibel koordinieren und einsetzen. Bereits vermehrt in der Diebstahlsicherung und zur rund um die Uhr Beaufsichtigung von Kindern oder älterer und kranker Menschen im Einsatz.
    * Geofencing Standorte und Geschehnisse können in Echtzeit verfolgt werden. Es ist ein perfektes SOS-System und wird überwiegend im Personenschutz eingesetzt. Bereiche können genau definiert werden.

Firmen, die diese Systeme bereits vermarkten GPS-Systems, KCS BV, Chevin Fleet Solutions, MotorhomeSecurity

In der Luftfahrt

Größter Profiteur des GPS ist die zivile Luftfahrt. Alle modernen Navigationssysteme sind GPS-gestützt, insbesondere in der Verkehrsluftfahrt sind jedoch weiterhin Systeme in Form von VOR- oder NDB-Empfängern üblich, das GPS nimmt hier in der Regel nur eine unterstützende Funktion ein.

Theoretisch, vorbehaltlich der Zulassung, erlauben die Genauigkeiten (P/Y-Signal) sogar automatische Landungen, sofern die Mittellinien der Landebahnen vorher genau vermessen wurden, d. h. die Koordinaten bekannt sind und zusätzlich DGPS eingesetzt wird. Einige unbemannte Luftfahrzeuge, wie EuroHawk benutzen dieses Verfahren. In der Verkehrsluftfahrt ist es zur Zeit (Ende 2008) teilweise zugelassen. Ob ein Anflug nur mit dem GPS als Navigationssystem zugelassen ist, hängt von den Sichtbedingungen, dem genutzten System (GPS, DGPS) und der Ausrüstung von Luftfahrzeug und Landebahn ab. Eine Vorreiterrolle nehmen hier die Vereinigten Staaten ein, jedoch verbreiten sich GPS-gestützte Anflüge auch in Europa immer mehr.

Insbesondere in Sportflugzeugen wie Segelfliegern, Ultraleichtflugzeugen , die nicht über Funknavigationsanlagen wie VOR- oder NDB-Empfänger verfügen, erfreuen sich GPS-Empfänger großer Beliebtheit. Da sich der Pilot durch die einfachere Navigation voll auf das Fliegen konzentrieren kann, steigert die GPS-Nutzung auch die Sicherheit, die Wahrscheinlichkeit des Verfliegens sinkt. Jedoch muss auch immer mit einem Ausfall des Systems gerechnet werden, da es bei blindem Vertrauen in das System und gleichzeitigem Ausfall zu einem Verlust der Kenntnis der eigenen Position kommen kann, wodurch es unter Umständen auch zu gefährlichen Situationen , wie Treibstoffmangel, Einflug in Flugverbotszonen usw., kommen kann.

Wie bei der Nutzung in Kraftfahrzeugen gibt es sowohl fest eingebaute Systeme, wie auch nachgerüstete Geräte. Insbesondere die Nutzung von PDAs mit angeschlossenen GPS-Mäusen nimmt im Freizeitbereich stark zu, da mit geringem Aufwand und Kosten ein leistungsstarkes Navigationssystem nachgerüstet werden kann.

Im Auto

Hier handelt es sich um GPS-Geräte, die mit umfangreicher Landkarten- und Stadtplan-Software ausgestattet sind. Sie ermöglichen meist akustische Richtungsanweisungen an den Fahrer, der zum Beispiel am Beginn der Fahrt lediglich den Zielort wie z. B. Straßenname und Ort einzugeben braucht. Im Auto wird bei Festeinbauten ab Werk (siehe Infotainmentsystem) unterschieden zwischen Systemen, die Sprachausgabe mit Richtungsangaben auf einem LCD (meist im Autoradioschacht) kombinieren, sowie Sprachausgabe mit farbiger Landkartendarstellung, bei welcher der Fahrer besser räumlich sieht, wo er unterwegs ist.

In letzter Zeit haben PDA-, Smartphone- und mobile Navigationssysteme starken Zuwachs erhalten. Sie können flexibel in verschiedenen Fahrzeugen schnell eingesetzt werden. Meist wird die Routenführung grafisch auf einem Farbbildschirm mit Touchscreen dargestellt. Auch ist die Verbreitung durch ständig fallende Preise der Elektronikhändler und Lebensmitteldiscounter zu erklären.

Bei den meisten Festeinbauten ab Werk sowie den neuesten PDA- und PNA-Lösungen werden Verkehrsmeldungen des TMC-Systems, wonach der Fahrer automatisch an Staus oder Behinderungen vorbei dirigiert werden soll, auch mit berücksichtigt.

Festeingebaute Systeme sind in der Regel zwar erheblich teurer als mobile Geräte in Form von z. B. PDAs, haben jedoch den Vorteil, dass sie mit der Fahrzeugelektronik gekoppelt sind und zusätzlich Odometrie-Daten wie Geschwindigkeit und Beschleunigung verwenden, um die Position präziser zu bestimmen und auch noch in Funklöchern wie z. B. Tunneln eine Position ermitteln zu können.

Der Vorteil der stark zunehmenden Navigation in Autos liegt darin, dass der Fahrer sich ganz auf den Verkehr konzentrieren kann, es ist ein Komfortmerkmal für den Fahrer, navigiert zu werden. Auch kann ca. 1–3 % Treibstoffverbrauch eingespart werden, wenn alle Fahrzeuge den optimalen Weg wählen würden.

Es darf jedoch auch nicht unerwähnt bleiben, dass vor allem Geräte mit graphischer Anzeige dazu neigen, den Fahrer abzulenken und es daher vermehrt zu Unfällen aufgrund von Unachtsamkeit gekommen ist.

GPS kann auch zur Diebstahlsicherung genutzt werden. Hierzu wird die GPS-Anlage z. B. des Fahrzeuges mit einem GSM-Modul kombiniert. Das Gerät sendet dann, im Falle eines Fahrzeugdiebstahls, die genauen Koordinaten an einen Dienstleister. In Verbindung mit einem PC kann dann z. B. über das Internet sofort die entsprechende Straße und der Ort abgelesen und die Polizei alarmiert werden.

Im Freien

GPS-Geräte eignen sich auch zum Einsatz am Fahrrad, beim Wandern (zum Beispiel als kompaktes Gerät am Handgelenk) oder im Flugzeug oder neuerdings auch beim Fotografieren (Fotoverortung). Der Funktionsumfang der im Handel erhältlichen Geräte richtet sich nach Anwendungsbereich und Preis. Schon einfache Geräte können heute nicht bloß die Längen- und Breitengrade anzeigen, sondern auch Richtungsangaben machen, Entfernungen berechnen und die aktuelle Geschwindigkeit angeben. Die Anzeige kann so eingestellt werden, dass ein Kompasssymbol ausgegeben wird, das nicht nach Norden, sondern in die Richtung zeigt, die vom Benutzer durch die Eingabe der Zielkoordinaten (Wegpunkt) angegeben worden ist. GPS-Geräte stellen hier eine Weiterentwicklung der klassischen Navigation mit Kompass und Karte dar. Diese Funktion verwendet man zum größten Teil bei der Schatzsuche per GPS (Geocaching). Hochwertige, moderne Geräte können neben Wegpunkten, Routen und Track Logs auch digitale Karten speichern und damit den aktuellen Standort auf einer Karte darstellen. Für den Außenbereich liegen für verschiedene Länder Topografische Karten im Maßstab 1:25.000 zur Nutzung mit dem GPS vor.

Wenngleich die Outdoor-GPS-Geräte dafür nicht primär gedacht sind, können selbst kleine Armbandgeräte in Autos oder in der Bahn (Fensterplatz) verwendet werden; der Empfang in Gebäuden ist jedoch mit diesen Geräten gewöhnlich nicht möglich.

In der Seefahrt

Es gibt eine breite Angebotspalette an GPS-Geräten, die speziell für die Anforderungen der Seefahrt zugeschnitten sind, von kleinen Handgeräten über PC- und PDA-Programme, die mit GPS-Empfängern arbeiten, bis zu Einbauanlagen für die Großschifffahrt. Für die Zwecke der Seenavigation bestimmte Geräte verfügen dabei in der Regel über eine Kartenanzeige („Moving Map“) mit speziellen, elektronischen Seekarten in verschiedenen, nur begrenzt standardisierten Formaten. Viele der Geräte sind wassergeschützt ausgelegt; anspruchsvollere ermöglichen auch die Kompositdarstellung der Seekarten mit weiteren Daten wie Wetterkarten oder Radardarstellungen. Beim AIS dient das GPS als Zeitbasis zur Koordinierung der Slot-Benutzung.

In Gebäuden

In Gebäuden ist der GPS-Empfang generell reduziert bis unmöglich. Im konkreten Fall hängt es neben den verwendeten Baustoffen im Gebäude und deren Dämpfungsverhalten auch vom Standort innerhalb eines Gebäudes ab. In Fensternähe bzw. in Räumen mit großen Fenstern und freier Sicht auf den Himmel kann je nach momentaner Satellitenposition durchaus noch eine Standortbestimmung mit reduzierter Genauigkeit möglich sein. In Innenräumen, wie Kellern, ist der GPS-Empfang praktisch immer unmöglich.

Mit neueren Empfänger-Chipsätzen der Firma SiRF (etwa SiRFstar III) oder der Firma u-blox (z. B. u-blox-5) ist in manchen Situationen wie in Gebäuden ein GPS-Empfang durch in Hardware massiv parallelisierte Korrelationsempfänger möglich. Statt wie bei herkömmlichen GPS-Empfängern die Korrelationen der Codefolgen (CDMA) zeitlich hintereinander durchzuprobieren und sich nur auf einen Empfangsweg festlegen zu können, werden bei diesen Chipsätzen 204.800 Korrelationsempfänger (SiRFstar III) parallel eingesetzt und zeitgleich ausgewertet. Damit kann der Mehrwegeempfang reduziert werden und in Kombination mit einer gesteigerten Eingangsempfindlichkeit des HF-Eingangsteils können die an Wänden oder Böden reflektierten GPS-Funksignale unter Umständen auch im Inneren von Gebäuden oder engen Gassen in dicht verbauten Gebieten noch ausgewertet werden. Allerdings ist bei indirektem Empfang von GPS-Signalen über Reflexionen eine Reduktion der Genauigkeit verbunden, da das Signal dann eine längere Laufzeit aufweist und die genauen zeitlichen Bezüge nicht mehr passen. Der zusätzliche Fehler über Mehrwegeempfang kann über einige 10 m betragen.

als Kunstform

GPS-Drawing bezeichnet das Erstellen von Bildern durch Aufzeichnung einer Route mit dem GPS-Empfänger. Hierbei werden aufgezeichnete Routen, auch Tracks genannt, später einfach am PC bearbeitet und als Bilddatei gespeichert. Teilweise werden auch Luftaufnahmen auf die Tracks überlagert. Möglich ist das GPS drawing mit jedem GPS-Gerät, das über eine Aufzeichnungsfunktion verfügt. Man sollte sich allerdings vorher überlegen, welche Strecke man wählt, um ein schönes Bild zu malen.

Dieser Artikel basiert auf dem Artikel Global Positioning System aus der freien Enzyklopädie Wikipedia und steht unter der GNU-Lizenz für freie Dokumentation. In der Wikipedia ist eine Liste der Autoren verfügbar.

< zurück   weiter >
Aktuelle IT News